Monitoring good water quality conditions: a comparative river and catchment analysis Brian Kronvang, Jørgen Windolf and Gitte Blicher-Mathiesen

Department of Bioscience, Aarhus University

Introduction

Needs = to monitore pressures and water quality from catchment to catchment

WFD1 plan for nutrient reductions to lakes – examples from Limfjordens catchment in Denmark

Again a very precise load reduction target is set !

Lake name	Reduction in phosphorus loading during plan period I (2015)
Gjeller lake	1 kg P/yr
Hornum lake	16 kg P/yr
Suldrup lake	7 kg P/yr
Brokholm lake	382 kg P/yr
Flynder lake	1300 kg P/yr

ARHUS UNIVERSITY Workshop in Magdeburg, 21-22 July 2014

The question is how, where and how often to monitore the water

quality?

Monitoring of water quality

History of monitoring in Denmark

- > 1970s to 1985 at highest monthly sampling protocols
- > 1987-1989: First intensive monitoring with automatic sampling in 2 years for two catchments – ca. 2100 samples per year in smaller catchment (11 km²) and all water samples analysed for N-forms and four P fractions. Data used for a Monte Carlo assessment of uncertainties in load estimates and was baseline for guidance on sampling frequency and load estimation for the national monitoring programme launched in 1989 in Denmark.
- > 1988: a mobile laboratory was bought in UK and tested in a small stream - testing failed mainly due to filtering problems and a high cost of technical assistance.

Continued

- > 1989-1993: In situ meaurements of primary production in 5 agricultural streams
- Since then fortnightly sampling in streams draining smaller catchments (< 30 km2) and 18 times annually in streams draining larger catchments (> 30 km2).
- Due to high uncertainty in TP an intensive automatic sampling (weekly) time-proportional was launched in 1993-1997 and from 1998-2003 flow proportional (weekly basis) in 24 smaller catchments.
- > Since 2003 only in 5 small catchments.

AARHUS UNIVERSITY

Data from intensive sampling

Figure 4. Relationship between measured concentration of dissolved inorganic phosphorus and discharge in the two test streams (Gelbæk: A and B; Gjern Å: C and D) during low-flow conditions (A and C) and storm-flow conditions (B and D). For the Gelbæk stream three examples of concentration loops during single storm events are shown (B)

Department of Bioscience
AARHUS UNIVERSITY

Workshop in Magdeburg, 21-22 July 2014

Figure 5. Relationship between measured concentration of particulate inorganic phosphorus and discharge in the two test streams (Gelbæk: A and B; Gjern Å: C and D) during low-flow conditions (A and C) and storm-flow conditions (B and D). For the Gelbæk stream three examples of concentration loops during single storm events are shown (B)

Three scales in river and catchment monitoring in Denmark

> Micro-catchment approach (5-15 km² since 1989-)

(5 agro-ecosystems with farmer surveys and 5x6 fields instrumented for

monitoring soil water, groundwater, drainage water and stream water).

> Catchment approach (10-100 km² since 1989)

(150 catchments with stream monitoring classified into types after dominating nutrient source being either diffuse agricultural, diffuse natural or point sources).

> National approach (43,100 km² since 1989)

(Combined monitoring and modelling of water and nutrient loadings and sources to Danish coastal waters).

Nitrogen and Phosphorus in streams and the loading of coastal waters 1990.....

... increasing to 169 Gauging stations

Gauging of fresh water discharge

Uncertainty in water quality monitoring

Huge reduction in monitoring activities during last 10 years in Denmark - what does it mean for uncertainties in loading calculations as ungauged areas increases?

Department of Bioscience

AARHUS UNIVERSITY

AARHUS UNIVERSITY

Workshop in Magdeburg, 21-22 July 2014

Huge reduction in monitoring activities during last 10 years in Denmark - what does it mean for uncertainties in loading calculations?

Department of Bioscience AARHUS UNIVERSITY

Large reduction in sampling effort in this specific river – how does it impact the accuracy of a trend estimate?

Scale dependency of Accuracy and Precision of annual total Nitrogen Loads

Sampling frequency	Small scale (10 km²) Gelbæk stream	Medium scale (100 km²) Case: Gjern stream	Larger scale (500 km ²) Case: Odense river
Accuracy (Bias)			
Monthly	-3.2%	-3.3%	-1.0%
Fortnightly	-1.0%	-0.7%	~0%
Precision (StDev)			
Monthly	3.0%	4.0%	2%
Fortnightly	1.0%	1.5%	<<1%

Kronvang et al., 1996: Hydrol. Proc. 10: 1483-1501

Scale dependency of Accuracy and Precision of Annual total phosphorus Loads

Sampling frequency	Small scale (10 km²) Gelbæk stream	Medium scale (100 km ²) Case: Gjern stream	Larger scale (500 km ²) Case: Odense river
Accuracy (Bias)			
Monthly	-18%	-6.1%	-3.0%
Fortnightly	-16%	-4.8%	-2.0%
Precision (StDev)			
Monthly	22%	16%	12%
Fortnightly	12%	9.3%	6.7%

Kronvang et al., 1996: Hydrol. Proc. 10: 1483-1501

AARHUS UNIVERSITY

Ungauged areas

Denmark is divided into ca. 3000 Hydrological Units (10-20 km²) covering the total land area (43.000 km²)

.. in each HU Modelling monthly

freshwater runoff

gross outlet of N & P to surface waters

sinks and reduction of N & P in surface waters

lakes, lake specific models for large lakes

in-stream reduction

inundated areas

restored wetlands

Aggregate to larger catchment to gauging stations (validation and bias correction) and to specific estuaries including ungauged subcatchments:

The DK-QNP model (Windolf et 2011, Journal of Environmental Monitoring)

Model predicted against measured total N loadings. Model is developed on data

from ca. 80 catchments with dominantly diffuse sources (1989-2005).

Model is applied in the Danish DK-QNP model for ungauged catchments (ID25)

agricultural catchment – 1993-2002.

Model is applied in the Danish DK-QNP model for ungauged catchments

(ID25)

AARHUS UNIVERSITY

Workshop in Magdeburg, 21-22 July 2014

Uncertainty: Example national scale – 50% ungauged

- Annual total nitrogen loading:
- > Bias: -2.0%
- > Precision: 0.5%
- > Annual total phosphorus loading:
- > Bias: -3.0%
- > Precision: 1.6%

Uncertainty: Example regional scale (Catchment area:1000 km²) – ungauged 50%

- > Annual total nitrogen loading:
- > Bias: -3.0%
- > Precision: 2.7%
- > Annual total phosphorus loading:
- > Bias: -6.0%
- > Precision: 6.1%

Uncertainty: Example local scale (Catchment area: 100 km²) – ungauged 50%

- > Annual total nitrogen loading:
- > Bias: -3.0%
- > Precision: 6.1%
- > Annual total phosphorus loading:
- > Bias: -12.0%
- > Precision: 12.5%

AARHUS UNIVERSITY

The costs of over implementation of mitigation measures due to overestimation of total N-loadings to estuaries

Schoue et al., 2007 NERI report No. 625.

Costs of under implementation of mitigation measures due to overestimation of N-loadings to estuaries

Andersen et al., 2011 International Review of Environmental and Resource Economics, 2011, 5: 1–46

ARHUS UNIVERSITY Hydrological and biogeochemical processes in catchments influences nitrogen cycling (removal and inertia) – and also how large and when we expect to see an effect on water quality Sand Chalk

So, when can we expect to observe reductions in different water bodies as an outcome of NAP's ?

<u>An evample:</u> Examining 10 Danish linked catchments and estuaries

- > Monitoring programme 1990-...
- > Freshwater runoff
- > N-loading
- > N- sources and sinks
- Mitigation measures reducing N pressure
- > Results achieved...
- > Cost's

Annual N surplus and annual N loading from diffuse sources (normalised) from 10 catchment

Annual N surplus and annual N loading from diffuse sources (normalized) from 10 catchment catchment specific relations

Nitrogen fluxes, mean values 2005-2009,

10 estuary catchments

Nitrogen surplus (index=100)	Min	Mean	Max
Exported to estuary waters	15%	21%	29%

Management of nutrients in Denmark

AARHUS UNIVERSITY

NITROGEN

...NATIONAL FIGURES FROM MONITORING TO PROVE THAT MANAGEMENT HAS WORKED

INTER-ANNUAL VARIATION IN NITROGEN LOAD FROM DIFFUSE SOURCES

MARKED DECREASE IN LOAD AND IN NITROGEN CONCENTRATION IN RIVERS

DUE TO:

BETTER SEWAGE TREATMENT

REDUCED NO3 EMMISSIONS FROM FARMED LAND

Workshop in Magdeburg, 21-22 July 2014

AARHUS UNIVERSITY

Workshop in Magdeburg, 21-22 July 2014

Trends in Nitrogen concentrations in 3 different Danish catchment pressure types

44-48% Reduction

In 5 of 7 streams in catchments with no agriculture and no sewage is N significantly reduced Mean reduction: 20% Equals the reduction in atmospheric N-deposition? Department of Bioscience
AARHUS UNIVERSITY

Flow weighted nitrogen concentrations in soil water, groundwater and streams draining arable and natural catchments – what is going on ?

AARHUS UNIVERSITY

Flow weighted nitrogen concentrations in soil water, groundwater and streams draining arable and natural catchments

P sources: Sewage

	<u>(tonnes P/year)</u>			
Sewage from	1990	2012	Reduction (%)	
Seawage treatment plants	3700	500	86%	
Industry	650	20	97%	
Scattered dwellings	420	180	57%	
Storm water outlets	260	180	31%	
Fishfarm	250	90	64%	
Total	5300	970	82%	

Regional Scale

10 estuaries,17 lakes

P load, land based

P concentration in lake and

coastal waters

Regional Scale

10 estuaries

Department of Bioscience

Workshop in Magdeburg, 21-22 July 2014

AARHUS UNIVERSITY

Workshop in Magdeburg, 21-22 July 2014

Local Scale

MONITORING OF P

Streams draining catchments with varying human impact on Pload

Including 31 agricultural catchments

(no sewage from larger point sources ...but some sewage from scattered dwellings)

Median catchment area: 13 km²

Mitigation measures implemented for reduction of diffuse P-emissions since late 1980'ies:....

- **Mid 1980s**: Stop for <u>effluents from farms</u> and farm yards building slurry tanks, etc.
- Late 1980s: Phosphate free detergents.
- **1992:** <u>Mandatory 2 m buffer strip</u> along all natural watercourses and watercourses with a high environmental objective.
- **1998 -:** Mitigation <u>effluents from scattered dwellings</u> in ecological sensitive waters.
- **2003:** Action Plan III in Denmark with the goal of <u>halving P-surplus before 2015</u>.
- **2012**: Mandatory <u>10 m wide buffer strips along all watercourses</u> no farming activities.

Phosphorus Balance (surplus fields)

31 catchments: Agriculture, - no larger point sources (>30 P.E.)

Reduced outlets from single houses...

but no visible effect of reduced P field surplus

AARHUS UNIVERSITY

Workshop in Magdeburg, 21-22 July 2014

* From streams draining catchments with no agriculture (<10%) and no sewage

Policy interventions – new research requirements

Scale of intervention

Locally targeted

Incentives

D

R

Ε

С

Т

Ο

Ν

Advice and guidance

Baseline regulations

Policy levers (examples)

Agri-environment schemes Emission based

Government extension services: Catchment Sensitive Farming - Emission based

Cross Compliance General binding rules Mode of action (measures)

Protecting receptors Controlling highrisk pathways

Reducing mobilisation of pollutants

Controlling sources

Applied (inter)nationally

New research horizons: A new reduction map for nitrogen is being developed

this year in a project between GEUS and AU.

Moreover, we are starting a new GUDP reseach project on how to perform

emission based regulation of nitrogen in DK agriculture

3rd generation map – in 2014 from new concensus DK-model based on ID15 polygons – ca. 3500

Workshop in Magdeburg, 21-22 July 2014

Mark

2nd Generation map – from 2008

Department of Bioscience
AARHUS UNIVERSITY

Water and nitrogen cycling: New national concensus model

under development in DK – operating at 500x500 m grid level

The national drainage water survey

Total nitrogen (TN) Nitrate (NO₃⁻) Ortho-P

Conclusions and Future Challenges

- More efforts should be devoted to give an 'error estimate' together with water quality monitoring data as many countries and regions presently are cutting down on threir sampling efforts.
- Intensive data from different types of catchment across Europe can assist in developing an error catalogue for catchment types.
- The costs of under or over implementation of mitigation options may in many cases be much higher than the cost of running appropriate monitoring programmes.
- Denmark is a nice example that general binding rules targeting N and P pollution helps for improving water quality in both surface and groundwaters.
- > But effects may in some water bodies take a long time to be seen.
- A new more targeted management of agricutural pollution is on the way in Denmark – including own monitoring of emissions

Thank you for your attention !

Ser.